

fDDDD OOOO CCCC UUUU MMMM EEEE NNNN TTTT

document title/ titre du document

PCI IPCI IPCI IPCI INTERFACE FOR NTERFACE FOR NTERFACE FOR NTERFACE FOR
LEONLEONLEONLEONUMCUMCUMCUMC

prepared by/préparé par Roland Weigand
 European Space Agency
reference/réference TOS-ESM/001.03/RW
issue/édition 3
revision/révision leonumc
date of issue/date d’édition 12-Mar-2004
status/état User Information
Document type/type de document Technical Note
Distribution/distribution LEONUMC Processor Users

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 2 of 26

s
C H A N G E L O G

reason for change /raison du changement issue/issue revision/revision date/date

Based on Release 3.3c, updated to reflect the
implementation in LEONUMC

3

leonumc

12-Mar-2004

C H A N G E R E C O R D

ISSUE: 3333 REVISION: LEONUMCLEONUMCLEONUMCLEONUMC

reason for change/raison du changement page(s)/page(s) paragraph(s)/paragraph(s)

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 3 of 26

s
Copyright © European Space Agency (ESA) 2002. This document may be redistributed provided that the
document and this notice remain intact. The document may not under any circumstances be resold or
redistributed for compensation of any kind without prior written permission. All other product names
mentioned herein are trademarks, registered trademarks, or servicemarks of their respective owners.

Disclaimer: All information is provided "as is", there is no warranty that the information is correct or
suitable for any purpose, neither implicit nor explicit. This information does not necessarily reflect the
policy of the European Space Agency.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 4 of 26

s
T T T T A B L E A B L E A B L E A B L E O O O O F F F F C C C C O N T E N T SO N T E N T SO N T E N T SO N T E N T S

1 INTRODUCTION...5
1.1 AMBA IMPLEMENTATION ..5

1.2 PCI IMPLEMENTATION..5

1.3 RELATING DOCUMENTS AND LINKS...6

1.4 TERMS AND ACRONYMS ...7

2 ARCHITECTURE AND FUNCTIONALITY ...9
2.1 GENERAL ARCHITECTURE ..9

2.1.1 HOST-BRIDGE AND SATELLITE MODE..10
2.1.2 PCI ERROR PROCESSING...10

2.2 PCI INITIATOR: AHB SLAVE...10
2.2.1 TRANSLATION OF MEMORY INSTRUCTIONS TO PCI...10

2.3 PCI INITIATOR: DMA INTERFACE = AHB MASTER ...12
2.3.1 PROGRAMMING OF THE DMA ...12

2.4 PCI TARGET: AHB MASTER ..13
2.4.1 TARGET INITIALISATION..13
2.4.2 ADDRESS CONFIGURATION...14
2.4.3 ERROR REPORTING ..15
2.4.4 TRANSACTION ORDERING ...15

2.5 INTERRUPT SUPPORT...16
2.5.1 INTERRUPTS FROM SATELLITE DEVICES...16
2.5.2 INTERRUPTS FROM THE PCI INTERFACE TO LEON.. 16

2.6 NOT INCLUDED FUNCTIONALITY ..17

2.7 BUGS AND APPLICATION NOTES..17

3 THE PCI ARBITER...19

4 REGISTER DESCRIPTION ..20

5 EXTERNAL INTERFACE DESCRIPTION..23
5.1 PIN DESCRIPTION ..23

5.2 CLOCKS, TIMING AND RESETS..23

APPENDIX A SOFTWARE EXAMPLE...25

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 5 of 26

s

1 INTRODUCTION
This document contains user information (datasheet) for the PCI functionality of the LEONUMC
processor. It references the non-public InSilicon documentation ([3]) concerning the PCI core.
Most information however is also contained in the PCI standard ([1]), and the InSilicon documents
are deemed unnecessary for the user.

1.1 AMBA implementation
The interface is connected to the on-chip AMBA bus implemented in LEON, according to the
AMBA specification [4] and to ESA’s AMBA-VHDL package [6]. It has two masters and one
slave connected to the AMBA High-performance Bus (AHB). A slave on the AMBA Peripheral
Bus (APB) allows access to configuration and status registers.

1.2 PCI implementation
The interface uses the Verilog PCI core revision 3.1b from Synopsys (former In-Silicon and
Phoenix Technologies), according to reference [3]. The core has nevertheless been configured to
the LEON-specific needs and was updated with patches. A block diagram of the PCI core is given
in Figure 1 (in this document, the term ‘PCI core’ only to the functionality contained in the box
named ‘PCI controller’). The PCI core contains data and request FIFOS and state machines to
schedule the PCI transactions, compliant to the PCI standard [1].
The PCI implementation has the following features:

• PCI 2.2 compliant configuration space
• 32 Bit 33 MHz PCI bus operation, independent of the processor clock (synchronising FIFOs)
• Initiator (Master) and Target operations (single word and burst mode)
• 8 words data FIFO per each of the 4 data paths (initiator/target, receive/transmit)
• 4 deep initiator request FIFO
• Target lock support
• Zero-latency Fast Back-to-Back transfers
• Zero wait state burst mode transfers
• Support for Memory Read Line/Multiple and Memory Write and Invalidate commands
• Use in both Host-Bridge and Satellite (add-in card) designs
• Delayed Read support
• Flexible error reporting by polling or LEON interrupt line

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 6 of 26

s

FIGURE 1: BLOCK DIAGRAM OF THE PCI CORE (SOURCE: [3])

1.3 Relating Documents and Links
Listed are the reference sources, which were used for this design, and which are relevant for the
user of this interface. These documents are not necessarily available for free download; however,
information may be obtained at the given Internet addresses.

[1] PCI Local Bus Specification, Rev. 2.2 and PCI Bus Power Management Interface

Specification, Rev. 1.1, PCI Special Interest Group (for information: http://www.pcisig.com)
[2] LEON/AMBA source code and User’s Manual, GR-LEON2-(FT)-1, Jiri Gaisler, Version

1.0.4, available from http://www.gaisler.com
[3] PCI Core Series Host-Bridge and Satellite Synthesizable Cores Asynchronous and

Synchronous with FIFOs, Release Version 3.0x Cores, Rev. 4, Phoenix Technologies Ltd.,
relevant release and application notes up to Version 3.1b universal core and patches. The core
is now distributed by Synopsys, for information please refer to:
http://www.synopsys.com/products/designware/docs/ds/c/dwcore_pci.pdf.

http://www.pcisig.com/
http://www.gaisler.com/
http://www.synopsys.com/products/designware/docs/ds/c/dwcore_pci.pdf

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 7 of 26

s
[4] AMBA™ Specification Rev 2.0. Document ARM IHI 0011A, 13 May 1999, issue A, first

release, ARM Limited. The document can be retrieved from http://www.arm.com. AMBA is
a trademark of ARM Limited. ARM is a registered trademark of ARM Limited.

[5] The SPARC Architecture Manual, Version 8. Prentice Hall, 1992. ISBN 0-13-825001-4
(SPARC® is a registered trademark of SPARC International, Inc. For information:
http://www.sparc.org, free download: http://www.sparc.com/standards/V8.pdf).

[6] VHDL package “amba”, Version 0.5, published by ESA – Microelectronics Section, 30 –
Aug. 2000, can be retrieved from http://www.estec.esa.int/microelectronics.

[7] The AMBA FAQ http://www.arm.com/support/amba?OpenDocument
[8] PCI to AMBA Bridge VHDL Model Datasheet, European Space Agency, 24-Jan-03
[9] LEON2-FT User’s Manual (leon2ft-1.0.4-configured.pdf)
[10] LEON-PCI Verification Study, GR-TECH-021, Issue 1.3, Gaisler Research, February 2003

1.4 Terms and Acronyms
AHB: AMBA High Performance Bus, see [4].
APB: AMBA Peripheral Bus, see [4].
BAR: Base Address Register. By the number of bits writeable in its BAR(s), every PCI

device indicates, how much address space it claims on the PCI bus. By writing to the
BAR, the PCI address space is allocated to the different satellite devices by the host-
bridge device at system boot-up time.

DAC: Dual Address Cycle. Allows specifying addresses > 32 bit on a 32-bit PCI bus within
two successive bus cycles.

DMA: Direct Memory Access, a data transfer, which is initiated by the processor, but data is
transferred directly from one peripheral to another. The PCI-initiator interface has a
DMA controller. Initialised via APB, it transfers data between AHB and PCI. The PCI
target interface is also a DMA port, initialised by the remote PCI initiator.

FIFOs: The PCI core has 4 data FIFOs of 8 words each and a master/initiator command FIFO
for 4 requests. In the FIFOS, synchronisation between the 2 clock domains (PCI clock
and processor clock) is done.
- MXMT: Master-transmit-FIFO (from AHB to PCI bus, for store instructions).
- MRCV: Master-receive-FIFO (from PCI bus to AHB, for load instructions).
- TXMT: Target-transmit-FIFO (from local memory to PCI bus, PCI-read).
- TRCV: Target-receive-FIFO (from PCI bus to local memory, PCI-write).
- Master request FIFO: Allows posting master read- and write-requests.

HDL: Hardware Description Language, means here both languages used for the present
design – Verilog for the PCI core and VHDL for the AMBA wrapper.

HOST-BRIDGE and SATELLITE: The host-bridge connects the local bus of a processor (host)
to the PCI bus. The PCI configuration registers of a host-bridge are accessible locally
by the host, but not via PCI configuration cycles. The host-bridge initialises the other
devices (satellites) through PCI configuration commands. The satellite is a PCI
device, configurable via PCI configuration cycles and the idsel line, but not locally. A
PCI system usually has one host-bridge, and several satellites. Do not confuse with the
terms of master and target: PCI is a multi-master bus. Both, host-bridge and satellites
can be initiator (master) and/or target on the bus. The present interface has universal
functionality, allowing both operation modes configurable via a bootstrap pin.

http://www.arm.com/
http://www.sparc.org/
http://www.sparc.com/standards/V8.pdf
http://www.estec.esa.int/microelectronics
http://www.arm.com/support/amba?OpenDocument

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 8 of 26

s
MASTER and TARGET: A PCI master initiates a transaction on the PCI bus. It specifies the

address and requests the number of data words to be read or written. Do not confuse
with the terms of Host-Bridge or Satellite. A PCI target decodes all addresses
specified by a master and responds, if the address corresponds to its address space. To
avoid confusion with the AMBA masters, the PCI master is usually called
INITIATOR in this document. However, especially in the context of the PCI core or
the PCI standard, the term master is sometimes used.

PCI: Peripheral Component Interconnect. See [1].
SPARC: Scalable Processor Architecture. See [5]. SPARC Data formats: SPARC allows

accesses to byte (8 bit), half-word (16 bit), word (32 bit) or double-word (64 bit)
formats. In a 32-bit architecture, double-word accesses are translated into 2 successive
32-bit accesses. SPARC is big-endian: The address always points to the most
significant data byte in the memory. Addresses must be aligned according to the size:
For half-word bit 0, for word bit 1 and 0, for double-word bit 2-0 must be zero. The
same alignment rules are applicable on AHB. See [4] and [5]. In this document, a
“word” refers to a 32-bit data word.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 9 of 26

s

2 ARCHITECTURE AND FUNCTIONALITY

2.1 General Architecture
The block diagram of the AMBA to PCI Bridge is shown in Figure 2. This is the PCI block which
appears in fig. 1 of [9] (LEON block diagram). The signals at the top of the figure are connected to
the AMBA bus system, to clock, reset and interrupt signals. The signals at the bottom are the
external pads.

pci_is (wrapper)

PCI core cu3232af - modified InSilicon R3.1b

pci_mas (initiator)

AHB slave
InitSlave

pci_tar pci_cfg

pci pads

APB slave
and IRQ

AHB master
InitMaster

AHB master
TargetMaster

On-chip AMBA bus system

Off-chip PCI bus

FIGURE 2: BLOCK DIAGRAM OF THE AMBA TO PCI INTERFACE

The interface is connected to the AHB by the means of one AHB slave and two AHB masters:
- InitSlave: AHB slave providing other AHB masters (i.e. the LEON processor) with a direct

memory-mapped (initiator) access to the PCI bus. An AHB request, directed to InitSlave, will
be translated by the interface into the appropriate PCI transactions. See section 2.2.

- InitMaster: AHB master of the DMA controller. When start addresses (local and remote) and
transfer sizes are programmed through APB, the DMA controller initiates transactions on PCI
as well as on the AHB and executes a data transfer between local AHB slaves and remote PCI
targets. See section 2.3.

- TargetMaster: AHB master connecting the PCI target device to the AHB. It provides access
for external PCI initiator devices to on-chip AHB slaves (for example the on-chip memory
controller). The PCI-target data transfer takes place in background, without intervention of the
LEON processor. However, the processor may monitor the status of the target interface, allow
interrupts for error reporting, or reset the target interface through APB. See section 2.4.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 10 of 26

s
The APB slave provides access to the configuration and status registers. The DMA controller is
also programmed through the APB. The APB registers in general are described in section 4.

To enable PCI initiator data transfer (either via InitSlave for memory-mapped access or via
InitMaster for DMA transactions), bit 0 of the mas_rs register must be set to 1 (see Table 5), and
the PCI master bit 2 of the PCI-command register (see Table 4). To prevent data ordering errors,
the operation of these two devices is mutually exclusive, i.e., a DMA transfer will not start until a
slave transfer was finished, and any new slave request will be retried, while the DMA master is
active. Care must be taken to avoid potential deadlock situations (one thread trying to program
DMA, while another thread tries to access PCI via load/store instructions).

2.1.1 HOST-BRIDGE AND SATELLITE MODE
The PCI interface allows for two fundamentally different operating modes, called Host-Bridge and
Satellite, selected by the bootstrap pin pci_host: ‘1’ = host-bridge, ‘0’ = satellite. The modes are
defined in section 1.4, and further details are given in the following sections. Please note that a
change of pci_host requires a reset and re-initialisation of the interface.

2.1.2 PCI ERROR PROCESSING
Error and status bits according to the PCI standard [1] are implemented in the PCI status register
(see Table 3 and Table 4). In host-bridge (pci_host = ‘1’) configuration, this allows an error
detection by polling. Certain events and errors are also reported by the interface in the status bits of
register int_st (Table 5). For each bit of this register, optionally, the (single) interrupt line can be
asserted. The different interrupt causes are distinguished by a set of interrupt registers. Their
functionality is documented in section 2.5.

2.2 PCI Initiator: AHB Slave
The AHB slave at the ports InitSlaveIn/Out allows other AHB masters, to become a master
(initiator) on the PCI bus. The AHB request, directed to InitSlave, will be translated by the
interface into the appropriate PCI transactions. This makes the PCI sequencing transparent for
LEON programs. The PCI bus may be accessed by the same instructions as the main memory (just
using the appropriate address range), even instructions can be fetched directly from PCI.

2.2.1 TRANSLATION OF MEMORY INSTRUCTIONS TO PCI
The SPARC instruction set foresees various load/store instruction types. The PCI bus foresees 32
bit wide transactions with byte-enables for each byte lane. These are translated to the PCI bus
according to the following rules:

- Transaction width: Instructions of different width (byte, half-word, word, double) are

translated as shown in Table 1 as a function of the 3 LSB of the SPARC address A[2:0]. The
PCI byte enables are active low and are given here in the order CBE#[3:0]. Big-endian

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 11 of 26

s
mapping according to [5] is implemented: Byte-writing to A[1:0] = 00 results in the byte
enable pattern 0111, hence, the msb byte lane (bits 31:24) of the PCI data bus is selected. The
table gives the assembler instruction in the second line and the C data-type (singed or
unsigned) to generate this instruction in the third line. For non-aligned accesses (in case they
can occur at all), the byte enable pattern (1111) is issued on PCI, to avoid destroying data in the
remote PCI target.

- PCI command type: The interface can issue the PCI commands memory-read/write (default),
I/O-read/write, configuration-read/write, memory-read-line/write-invalidate. The command to
be used is programmable through bits 6 and 7 of the mas_rs register (see Table 5). For
memory commands (default), the address issued on PCI is a word address with bits (1:0) set to
00, indicating linear incrementing mode. For I/O and configuration commands, the full 32-bit
address, as generated by the load/store instruction, is propagated to PCI.

- PCI configuration cycles: Configuration commands can be issued by setting mas_rs(7:6) to
the appropriate value (see above). The PCI standard [1] suggests to connect the chip-select for
configuration cycles (IDSEL#) directly to AD[31:16]. However, the PCI address space
available via the AHB slave is limited, and therefore PCI devices whose IDSEL# pin is
connected to or derived from AD[31:28] can not be addressed in this way. It is recommended
either to use only AD[27:16] (allowing for 12 PCI devices), to decode them from AD[27:16],
or to use the DMA controller for configuration cycles (section 2.3).

- Direction: store instructions result in PCI write transactions, loads are mapped to PCI read.
- Burst handling: By default, all requests are translated into single cycle PCI transactions

(address phase, followed by a single data phase), with the following exceptions:
- Linear incrementing store-word sequences are translated into undetermined length PCI

write bursts (up to a maximum of 255 words). The PCI burst mode is then maintained as
long as possible, i.e., read/write direction is unchanged and the address An+1 = An + 4.
When the sequence is discontinued, the PCI burst stops with a last data phase (byte enables
1111).

- Double word load/store requests are optionally executed as 2 word bursts (one address
phase, two data phases) on PCI, depending on the configuration bits mas_rs(1) for reads
and mas_rs(2) for writes, see Table 5. The double word mode accelerates the transfer on the
PCI side except in cases, where linear incrementing bursts are done by subsequent store-
double instructions (An+1 = An + 8), in this case mas_rs(2) should be set to 0. It is in general
recommended to set both bits to 1 and to use the DMA to transfer large data blocks.

- Write buffer: Write requests are posted to the PCI core, even to non-consecutive addresses
(the PCI core has a separate request FIFO). This allows the instruction to complete even before
the PCI cycle.

- Fast back2back cycles: Can be issued by writing 1 to bit 12 of mas_wc. Note: The PCI core
supports only fast back2back cycles to the same target, and the feature works only, if it is
enabled in the status_command register and if the target(s) support it.

- Address range: Since the PCI interface is not the only slave on the AHB bus, its address range
(on AHB and on the PCI bus) is limited to addresses between 0xA0000000 and 0xF0000000.
No paging register is provided, to re-map the AHB address range to different PCI addresses.
PCI addresses outside of this predefined range can be accessed only via DMA (section 2.3).
Note also that no special Sparc address space identifier (ASI) is used to access the PCI.

- Cacheability: The PCI address range is non cacheable (hard-wired). Any access to these
addresses results therefore in a PCI transaction. If PCI memory can be changed from outside

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 12 of 26

s
LEON and using a C-compiler, variables/pointers accessing the PCI addresses should be
declared as ‘volatile’ to prevent the compiler from optimising away read accesses.

- Fatal (abort) and address parity errors: The interface flushes all the current and other buffer
requests and reports a fatal error, mas_ferr in int_st(5). The next AHB request will restart the
PCI core.

- Data parity errors: During load/read transactions, one PCI parity error is recoverable in
hardware. If the mas_rs(3) bit is set, the interface ignores the erroneous PCI data and retries the
request. However, if the data parity error persists at the same address, it is considered to be
unrecoverable, an AHB error is produced and int_st(6) is set. Parity error is also impossible in
cases where the transaction is already finished on AHB when the error is detected/reported on
the PCI bus. The parity error is then reported in int_st(4) and error recovery must be done in
software.

Width 8 16 32 64

Assembler ld[s|u]b, stb ld[s|u]h, sth ld, st ldd, std
C-datatype char short int long long
A[2:0] = 000 0111 0011 0000 0000, 0000 (burst)
A[2:0] = 100 0111 0011 0000 not aligned
A[2:0] = x01 1011 not aligned not aligned not aligned
A[2:0] = x10 1101 1100 not aligned not aligned
A[2:0] = x11 1110 not aligned not aligned not aligned

TABLE 1 MAPPING OF AHB ADDRESS/SIZE TO PCI BYTE ENABLES CBE#[3:0]

2.3 PCI Initiator: DMA Interface = AHB Master
The DMA controller executes an autonomous data transfer between the local memory (or any other
AHB slave, except the PCI-AHB-slave) and a remote target on the PCI bus. The LEON processor
only intervenes for the initiation of the transfer. Please note that trying to access the PCI-AHB
slave with the PCI-DMA-AHB controller is not allowed and leads to undefined behaviour.
The DMA controller acts as a master on both busses, it reads from one bus and writes to the other
bus. Therefore, the terms of write and read are ambiguous, and it is more appropriate to use “to
PCI” for a read from AHB and write to PCI, and “from PCI” in the other case. The DMA AHB
Master uses the ports InitMasterIn/Out.

2.3.1 PROGRAMMING OF THE DMA
To enable DMA, mas_rs(0) must be set along with status_command(2). Since DMA is executed in
background, aerr and dma interrupts in int_en(6, 7) should also be enabled to synchronise the
application with start and end of the transfer (requires an appropriate interrupt handler). Whereas
the data itself is transferred through AHB, the DMA is initiated through APB. The DMA interface
executes only word-size transactions with all 4 byte lanes enabled, the PCI command type is
configurable. Please note that, though the AHB slave (see 2.2) is enabled together with the DMA,
during DMA transfer any request to the AHB slave will be retried. Each DMA sequence must
program PCI start address, PCI command type, number of words to be transferred and the start
address in the local memory by three APB writes in the specified order (see example in the
function pci_dma in Appendix A):

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 13 of 26

s
1. Write the PCI start address of burst to mas_address (re-write each time you initiate DMA, even

if the address is identical to the previous DMA request).
2. Write together the PCI command to mas_wc(11:8) and the number of words to mas_wc(7:0).

! Writing to mas_wc passes address, word count and command to the PCI core and initiates
the transaction on the PCI bus. Note, that the appropriate PCI command (as specified in [1])
must be written, i.e., a write command for a “to PCI” transfer and a read command for a “from
PCI” transfer.

3. Write the start address in the local memory map to dma_address. Now, data transfer is started
in background. In the rare case, where the PCI core has not accepted the request, the DMA
state controller remains locked and aerr in int_st(6) is reported. If the acceptance by the PCI
core was just delayed, rewriting dma_address may succeed. If the problem persists, reset the
interface by writing –1 (0xFFFFFFFF) to mas_rs. Please note that a DMA transaction may
never cross a 1 kByte border: The value represented by dma_address(9:2) + mas_wc(7:0)
must be less than 256. If this restriction is not respected, the data transfer stops at the 1 kByte
border, the PCI core is flushed and simultaneously the dma and aerr bits int_st(7) and int_st(6)
are asserted (+ interrupt if enabled).

When the specified number of words were successfully transferred, the interface asserts the dma
bit int_st(7) (+ interrupt if enabled) and goes back to idle state. Note, that “to PCI” transactions are
posted to the FIFO, therefore a “to PCI” transaction may still be ongoing (on the PCI bus), when
the dma interrupt occurs (signalling termination on the AHB bus). However, a proper transaction
ordering is assured, a subsequent (read) request is not executed before the FIFO data was written to
the PCI target.

2.4 PCI Target: AHB Master
The PCI target interface receives requests originated by remote PCI initiators (masters) and
transfers the data via its AHB-Master. The PCI target uses the AHB ports TargetMasterIn/Out. The
interface works in a similar way, as the DMA controller described in section 2.3 above. In fact, this
is considered as DMA in some documentation. The difference is, that the target transfer is initiated
by a remote device, and not by the local processor; to avoid confusion with the PCI-Master-DMA,
the term DMA is not used in this context.

2.4.1 TARGET INITIALISATION
Target data transfer is executed in background, without intervention of LEON. However, the target
functionality first needs to be enabled, following the specifications the PCI standard. In host-bridge
mode (pci_host = ‘1’), the target is configured by LEON itself via APB registers, whereas in
satellite mode, the configuration is done by a remote device via PCI configuration commands.
Some registers are available only in APB (accessible via the PCI bus with I/O commands, see
below).

In either case, the target is configured in the following registers:
- status_command register (Table 4), bits 0/1 for memory and I/O command response, bits 6/8

for check of and response to data and address parity errors.
- base address registers (Table 3) mem_base_address, dac_address, iobar
- APB registers tar_pa, tar_sc(7) (Table 5)

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 14 of 26

s
2.4.2 ADDRESS CONFIGURATION

Two types of base address registers (BAR) are implemented, one for memory commands, and one
for I/O commands. The address space occupied by a BAR on PCI is defined by the LSB of the
BAR. For example, if a BAR implements bits 31:8 of the address, bits 7:0 are not decoded by the
PCI core, and the BAR occupies 28 = 256 byte on PCI. The upper bits (31:8 in the example) are
relocatable on the PCI bus and configured by the system boot routines. Since the PCI address map
is unpredictable, and it is unwanted to move the target area in the local (AHB) address space along
with the PCI area, the upper bits can not be used as local address and must be mapped to the local
address space.

The address generation for PCI memory commands is illustrated in Figure 3. One memory BAR
exists, occupying a (byte-) address space of 24 bit (16 MByte). Address, byte enables and the hit
flag are propagated through the FIFO. The 8 MSB are then mapped in the 32 bit (local) AHB
address space to the page address in the APB register tar_pa(31:24) (Table 5). The default value
for tar_pa is 0x40000000, mapping the PCI target to the memory controller of LEON. The two
LSB of the AHB address and the size information are generated from the byte enable pattern.

The BAR is defined as ’64-bit registers’, and 40-bit addressing with dual address cycles (DAC) is
ensabled. Addressing with DAC cycles is not further explained in this document, please refer to
[1].
Notes:
• Trying to access the PCI-AHB slave with the PCI-target AHB master (i.e. mapping the BAR to

0xA0xxxxxx – 0xFFxxxxxx) is not allowed and may lead to undefined behaviour.

The IO-BAR defines a 10 bit (= 1 kByte) I/O-address space. It is (hard-)mapped to the local
address 0x80000000, and therefore provides access to all LEON (APB) registers for external (PCI)
devices. In a multiprocessor system, availability is improved: After a failure of the local processor,
another processor connected to the PCI bus can analyse the status of the faulty processor, or even
take control over its peripherals through the PCI bus. Also all the APB registers of the PCI
interface are accessible in this way, allowing (for example) a remote PCI-initiator to relocate the
memory BAR by writing to tar_pa. On the other hand, this access bears the risk of access
violations (a register configuration ‘known’ to the local processor being modified by a remote
device etc.), and it should be handled with care. The access can be disabled by clearing the PCI
status_command bit 0.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 15 of 26

s

FIFO

PCI
address
decoder

PCI address
40 bit +

DAC-flag

DAC-BAR
(7:0)

 (7:0)

 (31:24)

MEM-BAR
(31:24)

32 bit (+8 in
DAC cycle)

4 bit byte
enables

4 (beout)

41 (cdec_address)

translate
to byte

address

baddr
(2 bit)

(23:2)

waddr
22 bit

counter

mpaddr
(8 bit)

pbi input

programmed through
APB address tar_pa

PCI core

Target interface (pci_tar)

32 bit AHB
address

FIGURE 3: ADDRESS TRANSLATION FOR MEMORY COMMANDS IN THE PCI TARGET INTERFACE

2.4.3 ERROR REPORTING
PCI Error processing is implemented according to the PCI standard in the status_command
registers (see Table 4, accessible locally via APB host-bridge mode, or remotely through PCI
configuration cycles in satellite mode), and by the pin pci_perr and pci_serr. A few additional
events covered by the status/interrupt APB registers (Table 5) in the bits 0..3.
- The interface translates the PCI write byte-enable patterns into an AHB byte address and AHB

size info. The following byte enable patterns are supported: 0111 1011 1101 1110 (single
byte), 0011 or 1100 (half word), or 0000. The byte enables 1111 are ignored, this pattern is
frequently used as a dummy write cycle. Other byte enable combinations are ignored, and the
berr status bit int_st(2) is set (optional interrupt).

- Received data parity errors are detected and reported in int_st(1), with optional interrupt. The
target interface by default ignores these erroneous data. Nothing is written into memory, unless
the configuration bit perr_ign = tar_sc(7) is set.

- AHB errors are reported by the aerr status bit int_st(3), with optional interrupt.
- PCI system errors (pci_serr by any device on the bus) are reported by the serr bit int_st(0), with

optional interrupt.
- By writing ‘all-ones’ to tar_sc(6:0), the interface can be reset, the target FIFO’s are flushed.

2.4.4 TRANSACTION ORDERING
As specified in the PCI standard, delayed read functionality is implemented, obeying to the
following rules:
- The interface stores one delayed read at a time. When a read request was retried (because local

data not yet available), the interface remains locked for any other target read (targeting
different addresses). The initiator of the original read has to repeat its request to the same
address.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 16 of 26

s
- A retried (delayed) read can be interrupted by one or more PCI write accesses. The PCI

standard requires this write command to be processed first, to prevent a system lock-up.
- Meanwhile, the interface will prefetch read-data into the TXMT FIFO. After the (interfering)

write, when the read request is repeated, and the requested data is available in the FIFO the
delayed transfer completes normally.

All target read accesses are generally prefetching, also reads with I/O command. Once a start
address is given, the interface prefetches up to 8 words into the TXMT FIFO. After the last
required data word was transferred to PCI, the PCI core automatically flushes the FIFO to discard
the unused prefetched data. The interface assumes the complete local address space to be
‘prefetchable’, defined here as the fact, that reading from an address does not alter the data. This
behaviour is to be considered if non-prefetchable devices (for example the UART’s) shall be read
through the PCI target.

2.5 Interrupt Support

2.5.1 INTERRUPTS FROM SATELLITE DEVICES
Interrupt support according to PCI standard release 2.3 [1] is not implemented.

Only the 8-bit interrupt line register in the PCI CONFIG space exists and can be programmed by
the driver for interrupt routing information.

The handling of (PCI-satellite) interrupts at board/system level is implementation dependent, and
the interface does not provide further support. Any connection between PCI interrupts and LEON
interrupts must be done outside the processor.

2.5.2 INTERRUPTS FROM THE PCI INTERFACE TO LEON
The PCI standard foresees a single parity check, by which bus-errors can be detected, but not
corrected. Read data parity errors can eventually be retried by the hardware, as described in section
2.1.1. In other cases, recovery must be done in software. Therefore, events, which occur in the PCI
interface or on the PCI bus, are saved in status bits, and optionally, the irq pin of pci_is is asserted.
In LEON, this pin is connected to IRQ 14 of the interrupt-controller. Different events can be
selected to assert the interrupt by a configuration register (int_en) and the interrupt handler can
read the interrupting event (IE) in the status register (int_st). Furthermore, interrupts can be forced
(for SW test purposes) by writing to int_test. Examples of how to use the error bits and interrupts
are included in the SW test programs.

For generation of interrupts, retrieving and clearing the event, the following rules apply:
- To each IE, one particular bit is assigned in int_en, int_st and int_test, see Table 5.
- In any case, the IE is latched in its bit in int_st, even if the corresponding interrupt is disabled.
- A particular IE generates IRQ 14 only, if the corresponding bit in int_en is set to 1.
- The interrupt handler can retrieve the IE by reading int_st. The event is cleared by writing 1 to

its bit in int_st. It is suggested to clear only those bits, which were 1, when int_st was read, to
prevent the loss of IE, which may occur in the time span between reading and writing to int_st.
This is easily done by re-writing exactly the read value.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 17 of 26

s
- The interrupt can be forced by writing to int_test. For each bit of int_test, to which a 1 is

written, the corresponding bit of int_st will be set.

2.6 Not Included Functionality
Since the AHB slaves of LEON do never issue retry, both masters in the current design do not
support retry. The AHB masters do not use the master lock and the hprot features, and the AHB
slave never issues a split response.

The APB address decoding is on the select signal PSEL and the bits (7:2) of PADDR. All other
bits of PADDR are ignored. Hence, the APB master must take care that PSEL is asserted in a
proper way.

PCI interrupt acknowledges, special cycle and memory read multiple commands can be initiated
only via the APB-PCI interface. Initiation via the AHB devices (DMA or Slave) is not possible.
Dual Address Cycles (DAC) are limited to 40 bit addresses (only the 8 LSB of the DAC register
are implemented).

Power management: PCI power management is not implemented. The ‘extended capabilities’ bit 4
of the PCI status register is 0. However, the capabilities pointer (address 0x34) and the pmc
register at address 0xDC are implemented as read-only registers.

2.7 Bugs and Application Notes
The following application notes/warnings should be considered:

• Note on initiator flushing (applicable to AHB slave, DMA or APB mode): Some types of

errors imply a FIFO flush, or the FIFO’s can be flushed manually writing to the respective bits
in the mas_rs register. In some cases the PCI core may resume a previously recorded (burst)
transaction and fetch new data, the flush operation is then incomplete. It is therefore
recommended after a flush (whether implicit or manual) to check carefully the idle state of the
interface (should be 0x30 in the mas_st register), and eventually do a complete restart of the
interface (write –1 = 0xFFFF to mas_rs and re-initialise mas_rs).

• Note that any target read request is retried (on PCI), if target write data remains in the TRCV

FIFO. A sequence of write transactions to a target device (whether posted before or after a read
request from the same device) may therefore block a read. The writes have priority (cf. to the
PCI standard) and the read is retried, as long as there are new write transactions. This deadlock
is observed in particular at low processor frequency (the backend has not enough time to write
data to the memory), it can be avoided by reducing the frequency of write transactions posted
to the target device.

• Note that all target reads (memory, IO etc.) are prefetched (up to the FIFO size) on the AHB

bus, even if only one word is requested on PCI. This may result in data loss, if read-destructible
registers (e.g. UART RX ports) are in proximity of the address to be accessed.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 18 of 26

s
• Never try to do loop-back transactions on PCI, i.e. access the PCI-Initiator AHB-slave from

either the PCI-Target port, or from the PCI-DMA AHB-master. This leads to undefined
behaviour. Do not program the target page address to the range 0xA…0xF, and if you wish to
do DMA from one remote PCI target to another, please first ‘DMA’ the data to local memory,
then ‘DMA’ it back to PCI. AHB error is generated in future code releases.

The following problems have been reported ([10]):

o Though compliant to the PCI standard, the 64-bit BAR may pose compatibility problems with

current PC BIOSes, making it impossible to configure the device with the plug-and-play boot
routines. However, in an operating system which allows to re-scan the PCI bus (e.g. Linux), the
configuration is possible. Fixed in future code releases.

o DMA read operations may fail if the dma_address was not written very closely after the

mas_wc has been written (i.e. before the read was completed on PCI). Fixed in future code
releases.

o The LEON SDRAM controller can not handle a burst access from the PCI interface. Fixed in future

code releases.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 19 of 26

s

3 THE PCI ARBITER
The PCI arbiter is not included in the PCI interface. It is part of the LEON model, and it is
licensed and delivered together with LEON. This arbiter is totally independent from the PCI
interface. In order to use it together with the PCI interface, one of the arbiter’s pci_arb_[req|gnt]_n
pairs must be connected externally (off-chip) to the pci_[req|gnt_in]_n pair of the interface.

The hardwired configuration options:

• Arbiter for 4 PCI agents, numbered 0..3
• Arbitration is by round-robin, nested in two different priority levels (0 = high, 1 = low).

Assignment of the bus agents to the levels is APB programmable at the address
0x80000280. Exception is agent number 3, which is always in the lower priority level (1).

In the APB register (see Table 2), bits 0..2 indicate the priority of agents 0..2. Bit 3 is don’t care at
write and reads 1, all other bits are don’t care and read 0. Reset value is a one for all bus agents,
which means that by default all agents are in the same (lower) priority level.

Nested round-robin means, that the agents are grouped in two separate round-robin loops. In first
place, the loop with level 0 is executed. At each complete round-turn in level 0 (or if no request of
a device placed in level 0 is pending), one step is done in level 1. As an example, with agents 0 and
1 in level 0, and agents 2 and 3 in level 1, the sequence of would be 0 – 1 – 2 – 0 – 1 – 3 – 0 – 1 – 2
– 0 – 1 – 3 etc., if all agents are permanently requesting the bus. Hence, the following probabilities
of access are implemented:

• All agents in the same level have equal probability
• All agents in level 1 together have the same probability of access as one agent in level 0.
• If no agent is in level 0 (default at reset), or no agent in level 0 has a request, all agents in

level 1 are granted with equal probability

Re-arbitration occurs at the following conditions:

• Frame_n is asserted (low), and another master has requested the bus. Only one single re-
arbitration takes place during a burst, and the handover only becomes effective, when the
current owner deasserts frame_n. No latency control is performed by the arbiter, latency
counters – by the PCI standard – are implemented in each PCI master.

• At bus-idle and no request pending, as soon as a new request occurs. A turnover cycle is
required by the standard to prevent collisions with the previous owner. "idle" is assumed,
when frame_n is high for more than 1 cycle.

• At "broken master" timeout (section 3.4.1 of the standard). Grant is removed from an agent,
which has not started a cycle within 16 cycles after request (and grant). Reporting of such a
'broken' master is not implemented.

The bus is parked to agent 0 after reset, it remains granted to the last owner, until another agent
requests the bus. When another request is asserted, re-arbitration occurs after one turnover cycle.
The optional bus lock mentioned in the standard is not considered here and there are no special
conditions to handle when lock_n is active.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 20 of 26

s

TABLE 2 PCI ARBITER CONFIGURATION REGISTER AT APB-ADDRESS 0X80000280

4 REGISTER DESCRIPTION
All registers of the PCI interface are connected to the internal APB bus and mapped to the address
0x800001XX (except the PCI arbiter control register on 0x80000280, see Table 2). In the tables
below, only the byte address (the ‘XX’) is specified. The register names given in this chapter
correspond to the names defined by the C-structure pci_conf_regs in Appendix A.

Each PCI device has a mandatory set of configuration registers, which are specified in the PCI
standard [1]. Their names and default values are summarised in Table 3. Details of the PCI
status/command register at address 0x04 are given in Table 4. The PCI core allows writing to a
subset of the four byte lanes (= 32 bit) through four active-low byte enable lines. Since APB only
supports word writes, the byte enables must be written to the config_ben register (see Table 5),
before writing to one of the registers of Table 3. It is suggested to clear config_ben immediately
after a nonzero value was used. Identification constants, such as device_id, vendor_id, subsys_id,
and rev_id are hard-wired as specified in the table. All not implemented registers are read as 0.
Since power management capabilities are not implemented, bit 4 of the PCI status (“extended
capabilities” = bit 20 of status_command) is 0. However, the cap_ptr and pmc register remain at
addresses 0x34 and 0xDC as shown in the table in italics.

Note that in host-bridge configuration (pci_host = ‘1’), the registers of Table 3 are locally available
to LEON at the addresses 0x80000100 to 0x80000140, whereas in satellite mode (pci_host = ‘0’),
they are accessible via the PCI bus only (using configuration commands).

Note:
• A copy of the registers of Table 3 remains accessible even in satellite mode. These registers

have no impact on the functionality, but they may be read to get constants like vendor-id etc.
• Even in host-bridge mode, the registers of Table 3 – like any other APB register - can be

accessed remotely via PCI-IO commands, if the target is enabled for IO access.

Other registers of the PCI interface (not standardised in PCI [1]) are mapped to the APB addresses
between 0x80000144 and 0x80000178. The registers are listed in Table 5. The address column
gives the 8 LSB of the APB address. Bits (1:0) are supposed to be 0, but their actual value is
ignored. Register bits not listed in this table are not-implemented and read as 0. Some registers of
this block contain status information for debug purpose during hardware design and are not
relevant for application programs. These are marked reserved.

Bit 31..4 3 2 1 0 Default value
Content 0x0000000 (read-only) 1 (read-only) P2 = priority of

master 2
P1 = priority of

master 0
P0 = priority of

master 0
0x0000000F

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 21 of 26

s

TABLE 3 PCI CONFIGURATION REGISTERS (SEE ALSO [1] AND [3])

TABLE 4 PCI STATUS COMMAND REGISTER AT ADDRESS 0X04 (SEE ALSO [1])

1 Names are identical to the names used in the C data structure pci_conf_regs defined in Appendix A
2 RR = Read and Reset by writing 1, RW = Read Write, RO = Read Only

Addr. Register Name1 Description Default value
00 device_id Device- & vendor ID (ESA = 16E3). Read only. 0x1E0F16E3
04 status_command According to PCI standard [1]

Bit description see Table 4
0x02800000

08 class_revision Processor device (0xB), Revision 1. Read only. 0xB01
0C bist_head_

lat_cacheline
See PCI standard [1]. 0

10 mem_base_address Defines a 24 bit memory address space.
Bits 23-0 are read-only.

0xC = prefetchable and 64 bit
relocatable

14 dac_address For dual address cycles. Dac_address(7:0) = bits 39-
32 of the 40 bit PCI address in DAC mode.

0

18 iobar Base register 10 bit IO address space.
Bits 9-0 are read-only.

0x1 = IO space

1C - 28 reserved1[4] other registers, not implemented (read 0) 0
2C subsystem_id Subsystem- and vendor ID (ESA = 16E3). Read only. 0x210316E3
30 exp_rom_base_addr not implemented 0
34 cap_ptr index to the extended capabilities register. Read only 0xDC
38 reserved2 0
3C latency_interrupt See PCI standard [1]. 0
40 retry_trdy Bits 15:8: Retry Timeout Value, sets the number of

retries that the initiator will perform
Bits 7:0: TRDY Timeout Value, sets the number of PCI

clocks that the initiator will wait for TRDY

0x8080

DC Pmc Power management capabilities: see [1]. Read only. 0x7E010001

Bit PCI register Description RR, RW or RO2 Reset value
31 status 15 Parity error detected RR 0
30 status 14 SERR asserted RR 0
29 status 13 Master has terminated with master abort RR 0
28 status 12 Master was terminated with target abort RR 0
27 status 11 Target has signalled target abort RR 0

26..25 status 10..9 Devsel timing RO 01 (medium)
24 status 8 Master received/asserted PERR RR 0
23 status 7 Target supports fast back2back RO 1
22 status 6 User definable features RO 0
21 status 5 66 MHz capability RO 0
20 status 4 Power management capability RO 0
19 status 3

interrupt status
(optional, see
section 2.5.1)

State of the interrupt in the device. Only when the
Interrupt Disable bit (bit 10) in the command register is
a 0 and this Interrupt Status bit is a 1, will the device’s
INTA# signal be asserted. Setting the Interrupt Disable
bit to a 1 has no effect on the state of this bit.

RO State at any
determined by
external input
pcii.intr_status

at any time.
18..16 status 2..0 reserved RO 000
15..11 command 15..11 reserved RO 000000

10 command 10
interrupt disable

0 enables, and 1 disables the assertion of the device’s
INTA# signal. Fed to external output pcio.intr_disable

RW (RO)
(option, see 2.5.1)

0

9 command 9 Master can generate fast back2back RW 0
8 command 8 Enable SERR driver RW
7 command 7 Address/data stepping on PCI bus RO 0
6 command 6 Enable parity check RW 0
5 command 5 VGA palette snooping RO 0
4 command 4 Enable memory write and invalidate RW 0
3 command 3 Enable special cycles RO 0
2 command 2 Enable PCI master RW 0
1 command 1 Enable target memory command response RW 0
0 command 0 Enable target IO command response RW 0

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 22 of 26

s

Addr. Reg. Name3 Bit(s) Description Default value
44 config_ben 3-0 Byte enables for writes to the registers of Table 3.

Cf. to [1], each of the 4 bits is assigned to 1 byte lane.
0 = all 4 byte
lanes enabled

48 mas_address 31-0 PCI start address for PCI initiator transactions in DMA mode.
First parameter of DMA/APB programming sequence.

X = no reset

4C Reserved
Specifies the PCI transaction in DMA mode. Writing to this register initiates the transaction on PCI.

Second parameter in the DMA programming sequence.
12 Use back2back-mode: can be written to 1, if this transaction is to the same target,

as the last one. Note: works only, if the core is enabled for back2back mode.
0

11-8 PCI command (cf. to [1]) to be used in DMA mode 0

50 mas_wc

7-0 Word count: number of words to be transferred. 0
54 reserved

Initiator reset/set. Read/write config bits. Writing all-ones resets the interface: flush FIFOS, reset byte enables,
and terminate the AHB-slave cycle. A DMA burst is terminated with an AHB error, int_st(6).

7-6 Specifies the 2 MSB of the PCI command, which is used by the AHB slave
interface. The 2 LSB are generated internally (11 for writes and 10 for reads). The
following commands can be selected by writing to bit 7-6: 00 = IO-read/write, 01 =
mem-read/write, 10 = configuration-read/write, 11 = mem-read-line/write-invalidate

01
(mem-rd/wr)

3 Perr-retry enable: if set, the AHB slave (word interface mode) generates one retry
on reads with a parity error. If the error on the retried address persists, an AHB

error is generated, to prevent deadlocks. LEON, when receiving the AHB error is
trapped (trap 0x9, memory exception).

0

2 LEON double word write: if set, double word writes (SPARC store double) execute
as 2 word bursts on the PCI bus. Else double word writes execute as bursts of

undefined length as long as the addresses are sequential.

0

1 LEON double word read: if set, double word reads (SPARC load double) execute
as 2 word bursts on the PCI bus. Else double word execute as 2 single reads.

0

58 mas_rs

0 PCI initiator enable: 1 = AHB slave and DMA master are enabled, if also command
2 of the PCI status_command register is set to 1 (see Table 4).

0

31..24 Target page address. Defines the 8 MSB of the memory page of 16 Mbytes, to
which incoming PCI addresses are mapped (see section 2.4.2).

0x40 = start of
the RAM area

5C

tar_pa

23..0 reserved 0
Target status and command register. Bit 7: Configuration, Bits 6..0: status information for debug purpose.

By writing 111 1111 to bits 6:0 of this register, the target interface can be reset.
7 When this bit is set, TRCV data arriving with a parity error is written to the memory.

Generation of the perr status bit and assertion of interrupt is not affected.
0 = do not

write perr data

60 tar_sc

6-0 Target status (011 0000) in idle state, write 111 1111 to reset the target interface
and flush TXMT and TRCV FIFO

011 0000

The PCI interface has one single interrupt output (IRQ14). Interrupts for different events can be enabled, by
setting/clearing the corresponding bit in the int_en register. In any case (whether interrupt is enabled or not),

interrupting events are saved in the corresponding bits in int_st. The status bits are cleared by writing 1. Writing
to int_test, asserts a test interrupt (non maskable by int_en), and sets the corresponding bit in int_st.

7 DMA finished. If bit 7 and 6 are asserted simultaneously, the DMA transfer was
aborted either due to a 1 kByte border (AMBA rule), or by a PCI fatal error, or by a

general interface reset (by writing mas_rs = ‘all-ones’).

0

6 PCI-initiator (master) interface AHB error has occurred 0
5 PCI-initiator (master) has reported fatal error 0
4 PCI-initiator has reported parity error (can occur on read and write transactions). 0
3 AHB error occurred in a PCI target transaction 0
2 Target byte enable error (invalid byte enable received from PCI bus) 0
1 Target parity error (data with perr received from PCI bus) 0

64
68
6C

int_en
int_st

int_test

0 The system error (pci_serr) was asserted on the PCI bus. 0
70 reserved
74 reserved
78 dma_address In DMA mode: start address of a DMA burst in local memory. Last parameter of DMA programming sequence.

TABLE 5 APB REGISTERS OF THE PCI INTERFACE

3 Names are identical to the names used in the C data structure pci_conf_regs defined in Appendix A

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 23 of 26

s
5 EXTERNAL INTERFACE DESCRIPTION

5.1 Pin Description
The external pins of the interface are summarised in Table 6. For a detailed description of these
signals, please refer to [1]; the table gives the respective pin names of the standard.

Pin Name Direction Width Name in
PCI [1]
standard

Remarks

pci_rst_in_n in 1 RST# Asynchronous Reset for PCI clock domain, rising
edge synchronised internally to PCI clock

pci_clk_in in 1 CLK 33 MHz PCI clock (no 66 MHz capability)
pci_gnt_in_n in 1 GNT#
pci_idsel_in in 1 IDSEL ignored in host-bridge mode
pci_lock_n inout 1 LOCK# used as input only (never drives)
pci_ad inout 32 AD[31::0]
pci_cbe_n inout 4 C/BE[3:0]
pci_frame_n inout 1 FRAME#
pci_irdy_n inout 1 IRDY#
pci_trdy_n inout 1 TRDY#
pci_devsel_n inout 1 DEVSEL#
pci_stop_n inout 1 STOP#
pci_perr_n inout 1 PERR#
pci_par inout 1 PAR
pci_req_n inout 1 REQ# functionally output only, but tristated at reset
pci_serr_n inout 1 SERR# open drain output
pci_host in 1 bootstrap pin: ‘1’ = host-bridge, ‘0’ = satellite mode
pci_arb_req_n in 4 PCI arbiter request inputs
pci_arb_gnt_n out 4 PCI arbiter grant outputs

TABLE 6 EXTERNAL PINS OF PCI INTERFACE AND PCI ARBITER

5.2 Clocks, Timing and Resets
The PCI interface is connected to two independent clock domains: LEON clk and pci_clk_in.
Synchronisation between these domains is done in the internal FIFOs. PCI clock frequency is
nominally 33 MHz (no 66 MHz capability), and synchronisation is done in a way to allow the
LEON clock to operate at a lower (< 33 MHz) as well as at a higher (> 33MHz) frequency with
respect to the PCI frequency.

All the PCI pins are in the PCI clock domain. The electrical (AC and DC) characteristics of the
PCI pins relative to the PCI clock is specified in [1].

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 24 of 26

s
The PCI interface uses two asynchronous active-low resets:
• pci_rst_in_n for the part connected to the PCI bus (including the PCI sequencer)
• resetn, the main LEON reset for the part connected to the AMBA bus

The following remarks should be considered:
• The two reset inputs are independent, for a complete reset, both lines should be activated.
• The PCI configuration registers of Table 3 are always reset with the PCI reset, even in the host-

bridge (pci_host = ‘1’) mode, where they are accessible via APB.
• The rising edges of both reset signals are synchronised internally to their respective clock

domains.

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 25 of 26

s

APPENDIX A SOFTWARE EXAMPLE
The following C source code gives some programming examples for the PCI interface. Please note
that this code is UNTESTED and NO OPERATIONAL SOFTWARE!!!

/**/
/* DEFINITION of PCI command types */
/**/
#define IACKN_C 0
#define SPECIAL_CYC_C 1
#define IO_RD_C 2
#define IO_WR_C 3
#define MEM_RD_C 6
#define MEM_WR_C 7
#define CONF_RD_C 10
#define CONF_WR_C 11
#define MEM_RD_MUL_C 12
#define DAC_C 13
#define MEM_RD_LIN_C 14
#define MEM_WR_INV_C 15

/**/
/* PCI register structure */
/**/
typedef struct pci_conf_regs
{

 volatile unsigned int device_id; /* 00 */
 volatile unsigned int status_command; /* 04 */
 volatile unsigned int class_revision; /* 08 */
 volatile unsigned int bist_head_lat_cacheline; /* 0C */
 volatile unsigned int mem_base_address; /* 10 */
 volatile unsigned int dac_address; /* 14 */
 volatile unsigned int iobar; /* 18 */
 volatile unsigned int reserved1[4]; /* 1C-28 */
 volatile unsigned int subsystem_id; /* 2C */
 volatile unsigned int exp_rom_base_addr; /* 30 */
 volatile unsigned int cap_ptr; /* 34 */
 volatile unsigned int reserved2; /* 38 */
 volatile unsigned int latency_interrupt; /* 3C */
 volatile unsigned int retry_trdy; /* 40 */
 volatile unsigned int config_ben; /* 44 */
 volatile unsigned int mas_address; /* 48 */
 volatile unsigned int reserved3; /* 4C */
 volatile unsigned int mas_wc; /* 50 */
 volatile unsigned int reserved4; /* 54 */
 volatile unsigned int mas_rs; /* 58 master reset/set */
 volatile unsigned int tar_pa; /* page addr 5C */
 volatile unsigned int tar_sc; /* status+cmd 60 */
 volatile unsigned int int_en; /* interr. enable 64 */
 volatile unsigned int int_st; /* interr. status 68 */
 volatile unsigned int int_test; /* interr. test 6C */
 volatile unsigned int reserved5; /* 70 */
 volatile unsigned int reserved6; /* 74 */
 volatile unsigned int dma_address; /* dma local address 78 */

} pci_apb_t;

pci_apb_t *pciregs = (pci_apb_t *) 0x80000100; /* PCI registers */
volatile pci_apb_t *rpciregs = (pci_apb_t *) 0xB0000100; /* Remote PCI registers */

/**/
/* MACROS FOR PCI-INTERRUPTS */
/**/
#define PCI_SERR_INT (1<<0)
#define TAR_PERR_INT (1<<1)
#define TAR_BERR_INT (1<<2)
#define TAR_AERR_INT (1<<3)
#define MAS_PERR_INT (1<<4)
#define MAS_FATAL_INT (1<<5)
#define MAS_AHB_INT (1<<6)
#define MAS_DMA_INT (1<<7)

PCI INTERFACE FOR LEONUMC
issue 3 revision leonumc - 12-Mar-2004

TOS-ESM/001.03/RW
page 26 of 26

s
/**/
/* Interrupt wait */
/**/
wait_interrupt(int_type) unsigned int int_type;
{
 /*
 put the appropriate system call here to suspend the process,
 until the respective PCI interrupt was asserted. Wake-up
 condition is irq 14 with bit no. int_type set in pciregs->int_st
 */
}

/**/
/* WRITE to the LOCAL PCI COMMAND REGISTER */
/* (without altering status, in HOST-BRIDGE MODE) */
/**/
write_pci_cmd_register(cfg) unsigned short cfg;
{
 pciregs->config_ben = 8 + 4; /* byte enables for command reg */
 pciregs->status_command = (unsigned int) cfg;
 pciregs->config_ben = 0; /* reset byte enables */
}

/***/
/* Start DMA by writing to DMA controller APB. */
/* The function returns the interface status after the transaction. */
/***/
unsigned int pci_dma(paddr, laddr, size, cmd)
 unsigned int paddr, laddr, size, cmd;
{

 pciregs->mas_address = paddr; /* write start address on PCI */
 pciregs->mas_wc = (cmd << 8) | size; /* start PCI with length and command */
 pciregs->int_st = MAS_AHB_INT | MAS_DMA_INT; /* clear AHB interrupt bit */
 pciregs->dma_address = laddr; /* start AHB master with local address */

}

/**/
/* INITIALISE LOCAL MASTER INTERFACE in HOST-BRIDGE MODE */
/* cfg = 0x254 to initialise fback2back, parity, mwinv, PCI master */
/* Enables AHB slave and DMA master state machines */
/**/
init_local_master() {
 write_pci_cmd_register(0x254);
 pciregs->mas_rs &= ((MEM_RD_C << 4) | 0xF);
}

/**/
/* INITIALISE REMOTE TARGET INTERFACE, supposing that this is also */
/* running on a LEON processor */
/* This is also an example of how to use the DMA */
/* After this initialisation, when the IOBAR is set to 0xB..., */
/* APB regs of the remote processor are accessible through PCI, */
/* using f.ex. the pointer *rpciregs declared above. */
/**/
init_remote_target(devno) unsigned int devno;
{
 volatile unsigned int remcfg;
 volatile unsigned int rembar[3];

 remcfg = 0x143; /* target I/O + memory command response with serr/perr */
 pci_dma((1 << (16+devno)) + 4, &remcfg, 1, CONF_WR_C);
 wait_interrupt(MAS_DMA_INT);

 rembar[0] = 0xA0000000; /* configure memory BAR */
 rembar[2] = 0xB0000000; /* configure IO BAR */

 /* transfer 3 words with DMA */
 pci_dma((1 << (16+devno)) + 16, &rembar, 3, CONF_WR_C);
 wait_interrupt(MAS_DMA_INT);

 /* NOTE: configuration cycles can be issued with the AHB slave as well,
 however, the address space is limited then to addresses >= 0xA0000000,
 this means that address lines 28:31 can not be used for idsel decoding */
}

	1	INTRODUCTION	5
	AMBA implementation
	PCI implementation
	Relating Documents and Links
	Terms and Acronyms

	ARCHITECTURE AND FUNCTIONALITY
	General Architecture
	HOST-BRIDGE AND SATELLITE MODE
	PCI ERROR PROCESSING

	PCI Initiator: AHB Slave
	TRANSLATION OF MEMORY INSTRUCTIONS TO PCI

	PCI Initiator: DMA Interface = AHB Master
	PROGRAMMING OF THE DMA

	PCI Target: AHB Master
	TARGET INITIALISATION
	ADDRESS CONFIGURATION
	ERROR REPORTING
	TRANSACTION ORDERING

	Interrupt Support
	INTERRUPTS FROM SATELLITE DEVICES
	INTERRUPTS FROM THE PCI INTERFACE TO LEON

	Not Included Functionality
	Bugs and Application Notes

	THE PCI ARBITER
	REGISTER DESCRIPTION
	EXTERNAL INTERFACE DESCRIPTION
	Pin Description
	Clocks, Timing and Resets

